Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38585837

RESUMEN

Artificial intelligence (AI) has extensive applications in a wide range of disciplines including healthcare and clinical practice. Advances in high-resolution whole-slide brightfield microscopy allow for the digitization of histologically stained tissue sections, producing gigapixel-scale whole-slide images (WSI). The significant improvement in computing and revolution of deep neural network (DNN)-based AI technologies over the last decade allow us to integrate massively parallelized computational power, cutting-edge AI algorithms, and big data storage, management, and processing. Applied to WSIs, AI has created opportunities for improved disease diagnostics and prognostics with the ultimate goal of enhancing precision medicine and resulting patient care. The National Institutes of Health (NIH) has recognized the importance of developing standardized principles for data management and discovery for the advancement of science and proposed the Findable, Accessible, Interoperable, Reusable, (FAIR) Data Principles1 with the goal of building a modernized biomedical data resource ecosystem to establish collaborative research communities. In line with this mission and to democratize AI-based image analysis in digital pathology, we propose ComPRePS: an end-to-end automated Computational Renal Pathology Suite which combines massive scalability, on-demand cloud computing, and an easy-to-use web-based user interface for data upload, storage, management, slide-level visualization, and domain expert interaction. Moreover, our platform is equipped with both in-house and collaborator developed sophisticated AI algorithms in the back-end server for image analysis to identify clinically relevant micro-anatomic functional tissue units (FTU) and to extract image features.

3.
Sci Rep ; 12(1): 6765, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35474086

RESUMEN

Cycling is a promising solution to unsustainable urban transport systems. However, prevailing bicycle network development follows a slow and piecewise process, without taking into account the structural complexity of transportation networks. Here we explore systematically the topological limitations of urban bicycle network development. For 62 cities we study different variations of growing a synthetic bicycle network between an arbitrary set of points routed on the urban street network. We find initially decreasing returns on investment until a critical threshold, posing fundamental consequences to sustainable urban planning: cities must invest into bicycle networks with the right growth strategy, and persistently, to surpass a critical mass. We also find pronounced overlaps of synthetically grown networks in cities with well-developed existing bicycle networks, showing that our model reflects reality. Growing networks from scratch makes our approach a generally applicable starting point for sustainable urban bicycle network planning with minimal data requirements.


Asunto(s)
Ciclismo , Transportes , Ciudades , Planificación de Ciudades , Remodelación Urbana
4.
Sci Rep ; 12(1): 3816, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264587

RESUMEN

The ongoing SARS-CoV-2 pandemic has been holding the world hostage for several years now. Mobility is key to viral spreading and its restriction is the main non-pharmaceutical interventions to fight the virus expansion. Previous works have shown a connection between the structural organization of cities and the movement patterns of their residents. This puts urban centers in the focus of epidemic surveillance and interventions. Here we show that the organization of urban flows has a tremendous impact on disease spreading and on the amenability of different mitigation strategies. By studying anonymous and aggregated intra-urban flows in a variety of cities in the United States and other countries, and a combination of empirical analysis and analytical methods, we demonstrate that the response of cities to epidemic spreading can be roughly classified in two major types according to the overall organization of those flows. Hierarchical cities, where flows are concentrated primarily between mobility hotspots, are particularly vulnerable to the rapid spread of epidemics. Nevertheless, mobility restrictions in such types of cities are very effective in mitigating the spread of a virus. Conversely, in sprawled cities which present many centers of activity, the spread of an epidemic is much slower, but the response to mobility restrictions is much weaker and less effective. Investing resources on early monitoring and prompt ad-hoc interventions in more vulnerable cities may prove helpful in containing and reducing the impact of future pandemics.


Asunto(s)
Enfermedades Transmisibles/transmisión , Modelos Teóricos , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , Ciudades , Enfermedades Transmisibles/epidemiología , Humanos , SARS-CoV-2 , Estados Unidos/epidemiología
5.
Sci Rep ; 12(1): 4147, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264699

RESUMEN

The use of machine learning methods in classical and quantum systems has led to novel techniques to classify ordered and disordered phases, as well as uncover transition points in critical phenomena. Efforts to extend these methods to dynamical processes in complex networks is a field of active research. Network-percolation, a measure of resilience and robustness to structural failures, as well as a proxy for spreading processes, has numerous applications in social, technological, and infrastructural systems. A particular challenge is to identify the existence of a percolation cluster in a network in the face of noisy data. Here, we consider bond-percolation, and introduce a sampling approach that leverages the core-periphery structure of such networks at a microscopic scale, using onion decomposition, a refined version of the k-core. By selecting subsets of nodes in a particular layer of the onion spectrum that follow similar trajectories in the percolation process, percolating phases can be distinguished from non-percolating ones through an unsupervised clustering method. Accuracy in the initial step is essential for extracting samples with information-rich content, that are subsequently used to predict the critical transition point through the confusion scheme, a recently introduced learning method. The method circumvents the difficulty of missing data or noisy measurements, as it allows for sampling nodes from both the core and periphery, as well as intermediate layers. We validate the effectiveness of our sampling strategy on a spectrum of synthetic network topologies, as well as on two real-word case studies: the integration time of the US domestic airport network, and the identification of the epidemic cluster of COVID-19 outbreaks in three major US states. The method proposed here allows for identifying phase transitions in empirical time-varying networks.

6.
PNAS Nexus ; 1(4): pgac178, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36714852

RESUMEN

While significant effort has been devoted to understand the role of intraurban characteristics on sustainability and growth, much remains to be understood about the effect of interurban interactions and the role cities have in determining each other's urban welfare. Here we consider a global mobility network of population flows between cities as a proxy for the communication between these regions, and analyze how it correlates with socioeconomic indicators. We use several measures of centrality to rank cities according to their importance in the mobility network, finding PageRank to be the most effective measure for reflecting these prosperity indicators. Our analysis reveals that the characterization of the welfare of cities based on mobility information hinges on their corresponding development stage. Namely, while network-based predictions of welfare correlate well with economic indicators in mature cities, for developing urban areas additional information about the prosperity of their mobility neighborhood is needed. We develop a simple generative model for the allocation of population flows out of a city that balances the costs and benefits of interaction with other cities that are successful, finding that it provides a strong fit to the flows observed in the global mobility network and highlights the differences in flow patterns between developed and developing urban regions. Our results hint towards the importance of leveraging interurban connections in service of urban development and welfare.

7.
Phys Rev E ; 99(6-1): 062303, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31330727

RESUMEN

Mechanisms of pattern formation-of which the Turing instability is an archetype-constitute an important class of dynamical processes occurring in biological, ecological, and chemical systems. Recently, it has been shown that the Turing instability can induce pattern formation in discrete media such as complex networks, opening up the intriguing possibility of exploring it as a generative mechanism in a plethora of socioeconomic contexts. Yet much remains to be understood in terms of the precise connection between network topology and its role in inducing the patterns. Here we present a general mathematical description of a two-species reaction-diffusion process occurring on different flavors of network topology. The dynamical equations are of the predator-prey class that, while traditionally used to model species population, has also been used to model competition between antagonistic features in social contexts. We demonstrate that the Turing instability can be induced in any network topology by tuning the diffusion of the competing species or by altering network connectivity. The extent to which the emergent patterns reflect topological properties is determined by a complex interplay between the diffusion coefficients and the localization properties of the eigenvectors of the graph Laplacian. We find that networks with large degree fluctuations tend to have stable patterns over the space of initial perturbations, whereas patterns in more homogenous networks are purely stochastic.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...